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sum=sum+sign*term
err=term/abs (sum)
if (odd) then
sign=-sign
sums=sum
sum=sumc
else
sumc=sum
sum=sums
endif
if (err.1t.EPS)goto 2
odd=.not.odd

enddo 12
pause ’maxits exceeded in cisi’
endif
si=sums
ci=sumc+log(t)+EULER
endif
if(x.1t.0.)si=-si
return
END

CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1976, Journal of Research of the National Bureau of Standards,

vol. 80B, pp. 291-311; 1981, op. cit., vol. 86, pp. 661-686.

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by

Dover Publications, New York), Chapters 5 and 7.

6.10 Dawson'’s Integral
Dawson's Integral F'(x) is defined by
F(z) = e / et dt
0
The function can aso be related to the complex error function by
F(z) = #e*zz 1 — erfc(—iz)].

A remarkable approximation for F'(z), due to Rybicki [1], is

(6.10.1)

(6.10.2)

(6.10.3)

What makes equation (6.10.3) unusual is that its accuracy increases exponentially
as h gets small, so that quite moderate values of h (and correspondingly quite rapid

convergence of the series) give very accurate approximations.
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We will discuss the theory that leads to equation (6.10.3) later, in §13.11, as
an interesting application of Fourier methods. Here we simply implement a routine
for real values of = based on the formula.

It isfirst convenient to shift the summation index to center it approximately on
the maximum of the exponential term. Define n to be the even integer nearest to
x/h, and zg = noh, ' = x — xg, and n’ = n — ng, so that

N (! B2
F ! i 6.10.4
('r) - \/_E ’VLIZZ—N m’ ( . . )
n’ odd

where the approximate equality is accurate when h is sufficiently small and N is
sufficiently large. The computation of this formula can be greatly speeded up if
we note that

@R _ e ('R (ezx’h)” _ (6.10.5)

The first factor is computed once, the second is an array of constants to be stored,
and the third can be computed recursively, so that only two exponentials need be
evaluated. Advantage is also taken of the symmetry of the coefficients e ~(*'"* by
breaking the summation up into positive and negative values of n’ separately.

In the following routine, the choicesh = 0.4 and N = 11 are made. Because
of the symmetry of the summations and the restriction to odd values of n, the limits
on the do loops are 1 to 6. The accuracy of the result in this REAL version is about
2 x 1077, In order to maintain relative accuracy near = = 0, where F(z) vanishes,
the program branchesto the eval uation of the power series [2] for F'(x), for |z| < 0.2.

FUNCTION dawson(x)
INTEGER NMAX
REAL dawson,x,H,A1,A2,A3
PARAMETER (NMAX=6,H=0.4,A1=2./3.,A2=0.4,A3=2./7.)

Returns Dawson’s integral F'(z) = exp(—x?) [ exp(t?)dt for any real z.
INTEGER i,init,n0
REAL d1,d2,el,e2,sum,x2,xp,xx,c(NMAX)
SAVE init,c
DATA init/0/ Flag is O if we need to initialize, else 1.
if (init.eq.0)then

init=1

do 11 i=1,NMAX

c(i)=exp(-((2.*float (i)-1.)*H)**2)

enddo 11
endif
if (abs(x).1t.0.2)then Use series expansion.
X2=x**2
dawson=x* (1.-A1*x2*(1.-A2*x2*(1.-A3%x2)))
else Use sampling theorem representation.
xx=abs (x)

n0=2*nint (0.5%xx/H)
xp=xx-float (n0) *H
el=exp(2.*xp*H)
e2=elx*2

di=float (n0+1)
d2=d1-2.

sum=0.

do 12 i=1,NMAX
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sum=sum+c (i) *(el/d1+1./(d2*el))
di=d1+2.
d2=d2-2.
el=e2x%el
enddo 12
dawson=0.5641895835*sign (exp (-xp**2) ,x) *sum Constant is 1//7.
endif
return
END

Other methods for computing Dawson’s integral are also known [2,3].

CITED REFERENCES AND FURTHER READING:
Rybicki, G.B. 1989, Computers in Physics, vol. 3, no. 2, pp. 85-87. [1]

Cody, W.J., Pociorek, K.A., and Thatcher, H.C. 1970, Mathematics of Computation, vol. 24,
pp. 171-178. [2]

McCabe, J.H. 1974, Mathematics of Computation, vol. 28, pp. 811-816. [3]

6.11 Elliptic Integrals and Jacobian Elliptic
Functions

Elliptic integrals occur in many applications, because any integral of the form

/ R(t,s) dt (6.11.1)

where R is a rational function of ¢ and s, and s is the square root of a cubic or
quartic polynomial in ¢, can be evaluated in terms of elliptic integrals. Standard
references[1] describe how to carry out the reduction, which was originally done
by Legendre. Legendre showed that only three basic elliptic integrals are required.
The simplest of these is

I = / dt
y \/(al + blt) (ag + bgt) (a3 + b3t) (a4 + b4t)

(6.11.2)

where we have written the quartic s? in factored form. In standard integral tables [2],
one of the limits of integration is aways a zero of the quartic, while the other limit
lies closer than the next zero, so that there is no singularity within the interval. To
evaluate I;, wesimply break theinterval [y, x] into subintervals, each of which either
begins or ends on asingularity. The tables, therefore, need only distinguish the eight
cases in which each of the four zeros (ordered according to size) appears as the upper
or lower limit of integration. In addition, when one of the b's in (6.11.2) tends to
zero, the quartic reduces to a cubic, with the largest or smallest singularity moving
to +o0; this leads to eight more cases (actually just special cases of the first eight).
The sixteen casesin total are then usually tabulated in terms of Legendre’s standard
elliptic integral of the 1st kind, which we will define below. By a change of the
variable of integration ¢, the zeros of the quartic are mapped to standard locations
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